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Abstract

A physical model for the dynamics of a dispersion of solid spherical particles in an incompressible
viscous ¯uid is outlined and used to calculate the turbulence modulation in a stationary, homogeneous
and isotropic turbulent ¯ow with particles. Starting from a postulated ¯uid turbulence spectrum in the
absence of particles, the physical model predicts the corresponding ¯uid turbulence spectrum in the
presence of particles and the particles turbulence spectrum as function of frequency and wavenumber.
There are two versions of the model. The ®rst one uses a point-force approximation for the particles
and takes into account the hydrodynamic interaction between the particles. The second version accounts
for the detailed ¯ow around the (®nite-diameter) particles, but does not consider their hydrodynamic
interaction. The spectra, calculated with the two versions, are used to determine the turbulence intensity
of the ¯uid and particles as function of three relevant dimensionless groups. It is found that in general
the di�erences between the results of the point-particle model and the ®nite-diameter-particle model are
signi®cant. So one has to be careful with point-particle models. The e�ect of the hydrodynamic
interaction between the particles is up to a volume fraction of 0.1 still mostly negligible. 7 2000 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Turbulent ¯uid-particles ¯ows are encountered in a wide variety of applications. An accurate
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computation method for such ¯ows is essential, in order to be able to interpret and predict
experimental data and to support the scaling-up of applications. For that reason much interest
has been devoted to turbulent ¯uid-particles ¯ows and in particular to the possibility of
modeling them. See, for instance, the recent book by Crowe et al. (1998).
An important issue in the development of calculation methods for turbulent ¯uid-particles

¯ows is the in¯uence of the particles on the turbulence of the carrier phase. In particular, in
the review article by Crowe et al. (1996), much information is given about the literature on this
two-way coupling e�ect. Gore and Crowe (1989) gathered data from a variety of researchers in
order to generalize a trend for turbulence attenuation or augmentation and found that the
ratio of particle diameter to integral length scale of the ¯uid turbulence is important. Squires
and Eaton (1990) investigated the modi®cation of turbulence by small particles using direct
numerical simulations of stationary, isotropic turbulence. Examination of the spatial energy
spectra showed that the fraction of turbulence kinetic energy in the high wave numbers is
increased relative to the energy in the low wave numbers for increasing values of the particle
mass loading. Elgobashi and Truesdell (1993), using direct numerical simulations, studied the
modi®cation of decaying, homogeneous turbulence due to its interaction with dispersed small
solid particles. They also paid particular attention to the modi®cation of the turbulence
spectra. Portela et al. (1998) used large-eddy simulation to investigate a channel ¯ow laden
with small heavy particles. Their main result concerning the two-way coupling was that it
dampens the ¯uid velocity ¯uctuations and reduces the concentration of particles near the wall.
Elgobashi and Abou-Arab (1983) developed a two-equation turbulence model for predicting
two-phase ¯ows (describing ¯uid and particles as a continuum). The two equations describe the
conservation of turbulence kinetic energy and dissipation rate of that energy for the carrier
¯uid. Closure is achieved by modeling the turbulence correlations up to third order. Lun and
Liu (1997) applied a two-equation turbulence model too. However, the solid phase is simulated
by using a Lagrangian approach, in which the particles trajectories and velocities are
determined by integrating the particle equation of motion.
Also several physical models have been proposed for the turbulence modi®cation by

particles. For instance, Yarin and Hetsroni (1994) proposed a model for the particles-
turbulence interaction, in which both turbulence suppression by the ®ne particles and
turbulence enhancement by the coarse particles are considered. They found that the intensity of
the velocity ¯uctuations is determined by four parameters: the total mass content of the ¯uid±
particles mixture, the ¯uid±particle density ratio, the particle Reynolds number, and the ratio
of the particle size and turbulence length scale. The results of their study are in fair agreement
with experiments. Yuan and Michaelides (1992) presented also a model for the turbulence
modi®cation in particle-laden ¯ows based on the interaction between particles and turbulence
eddies. Two predominant mechanisms for the suppression and production of turbulence were
identi®ed: (1) the acceleration of particles in eddies is the predominant mechanism for
turbulence reduction, and (2) the ¯ow velocity disturbance due to the wake of particles or the
vortices shed by the particles is taken to be the predominant mechanism for turbulence
enhancement. The e�ect of the two mechanisms were combined to yield the overall turbulence
intensity modi®cation. The model exempli®es the e�ect of several variables, such as particle
size, relative velocity, Reynolds number, ratio of densities, etc. Again a comparison with
available experimental data con®rmed that this model predicts rather well the observed changes
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in turbulence intensity. Finally, Kenning and Crowe (1997) developed a model for carrier
phase turbulence in gas±particles ¯ows. The model suggests the importance of interparticle
spacing in establishing a turbulence length scale in particles±gas suspensions.
A di�erent type of physical model to investigate the turbulence modi®cation by particles has

been developed by Felderhof and Ooms (1989, 1990), further extended by Felderhof and
Jansen (1991). They developed a model for the dynamics of a dispersion of solid spherical
particles in an incompressible viscous ¯uid, in particular, paying attention to the in¯uence of
the particle±¯uid interaction on the e�ective transport coe�cients of the ¯uid±particles
suspension. The calculations of Felderhof and Ooms were based on a point-force
approximation (in which a force ®eld exerted by a particle on the ¯uid is represented by a
point force acting on the ¯uid at the particle center) with a friction coe�cient given by Stokes'
law. The work by Felderhof and Jansen takes the full force ®eld exerted by the ®nite-diameter
particle on the ¯uid into account. The study by Felderhof and Jansen ignores the
hydrodynamic interaction between the particles, unlike the model of Felderhof and Ooms. The
calculation scheme based on Felderhof and Jansen's study can handle the hydrodynamic
interaction between the particles in principle, but the calculations are very tedious and
computationally intensive.
The aim of this publication is to use the two versions of the physical model developed by

Felderhof and Ooms and by Felderhof and Jansen, to calculate the in¯uence of the particles on
the turbulence intensity of the ¯uid as function of the relevant parameters. The turbulence is
assumed to be stationary, homogeneous and isotropic. By comparing the results of the two
versions the reliability of the point-particle approximation can be studied. Also the importance
of including the hydrodynamic interaction between the particles can be investigated. The
results will, of course, also be compared with results of publications discussed above. Next to
an improved fundamental understanding, another aim of our work is to contribute to the
development of better two-¯uid models. At the moment it is not clear, how it can be achieved.
A possibility is to use our model to check and (if necessary) improve the source term in the
turbulent energy equation of two-equation turbulence models for two-phase ¯ows. We are
investigating this at the moment. Another possibility could be to calculate with our model the
turbulence energy and dissipation (the dissipation can be calculated from the energy spectra) in
each part of the ¯ow domain, and to use the energy and dissipation directly for closure of the
correlation terms in the mean momentum equations.
This publication is organized as follows. In Section 2 and Appendices A and B, the physical

model is discussed. Section 3 gives the calculation method for the turbulence intensities of the
¯uid and particles. In Section 4, the numerical results for these intensities are summarized, a
comparison is made with the results of other studies and conclusions are drawn. We conclude
in Section 5 with suggestions for future research.

2. Physical model for a turbulently ¯owing suspension of solid spherical particles

Consider a stationary, homogeneous and isotropic turbulent ¯ow ®eld without particles. The
velocity- and pressure ®eld are, respectively, given by v0 and p0: In order for the ¯ow ®eld to
remain stationary, homogeneous and isotropic an external (stirring) force ®eld F0 acts on the
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¯uid. N particles are then added to the ¯uid, keeping the force ®eld F0: To calculate the new
velocity ®eld and pressure ®eld, the method of induced forces can be employed. In this method
the two-phase system is described by a velocity ®eld v, called the suspension velocity, which is
identical to the ¯uid velocity in the part of space occupied by the ¯uid, and identical to the
solid body motion of the particles in the part of space occupied by the particles. The e�ect of
the stick boundary condition at the surfaces of the particles is represented by the force F acting
on the ¯uid. The relation between the suspension velocity v and the unperturbed (without
particles) ¯uid velocity v0 can formally be written in the following way (after Fourier
transformation with respect to time)

vo�1, . . . ,N; r� �
�

dr 0 Ko
ÿ
r, r 0; 1, . . . ,N

� � v0, o�r 0 �, �1�

or brie¯y

vo�1, . . . ,N� � Ko�1, . . . ,N� � v0, o, �2�
where o is the frequency. Similarly, the relation between the force F and v0 can formally be
written as

Fo�1, . . . ,N� � Ao�1, . . . ,N� � v0, o: �3�
(The calculation of the operators Ko and Ao will be discussed.) The probability distribution of
the particles in the ¯uid ¯ow ®eld is given by P�1, . . . ,N �: Ensemble averaging of Eqs. (2) and
(3) yields the average relations

hvoi �
�
� � �
�

dR1 � � � dRN P�1, . . . ,N�Ko�1, . . . ,N� � v0, o, �4�

hFoi �
�
� � �
�

dR1 � � � dRN P�1, . . . ,N�Ao�1, . . . ,N� � v0, o, �5�

where hvoi is the mean suspension velocity. In order to separate the ¯uid and particle motion,
it is convenient to introduce the mean ¯uid velocity vfo and the mean particle velocity vpo:
These velocities are related to the mean suspension velocity by

hvoi � �1ÿ f�vfo � fvpo, �6�
in which f is the volume fraction of the particles. The plan is to eliminate v0, o from Eqs. (4)
and (5), and to derive the relation between hFoi and hvoi
hFoi � w�o � hvoi, �7�

with w�o the e�ective friction operator, which has to be determined. For that purpose we ®rst
introduce cluster expansions for Ko�1, . . . ,N � and Ao�1, . . . ,N � in the relations Eqs. (4) and
(5). These relations then become expansions with their terms ordered with respect to the
number of particles involved. For Eq. (4) we introduce the cluster operators Lo de®ned in the
following way
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Ko�F� � Lo�F� � 1,

Ko�1� � Lo�1� � Lo�F�,

K�1, 2� � Lo�1, 2� � Lo�1� � Lo�2� � Lo�F�,

etc:

Above F is the empty set. For Eq. (5) we choose particle 1 as reference particle, and introduce
so-called rooted cluster operators Mo, de®ned as

Ao�1� �Mo�1�,

A�1, 2� �Mo�1; 2� �Mo�1�,

etc:

Substituting the above expressions in Eqs. (4) and (5) gives, after some calculations,

hvoi �
XN
s�0

1

s!

�
� � �
�

dR1 � � � dRs n�1, . . . ,s�Lo�1, . . . ,s� � v0, o �8�

hFoi �
XN
s�1

1

�sÿ 1�!
�
� � �
�

dR1 � � � dRs n�1, . . . ,s�Mo�1; 2, . . . ,s� � v0, o, �9�

in which n�1, . . . ,s� is the partial probability distribution function de®ned as

n�1, . . . ,s� � N!

�Nÿ s�!
�
� � �
�

dRs�1 � � � dRN P�1, . . . ,N�: �10�

Elimination of v0, o from Eqs. (8) and (9) gives the following ®rst two terms in the expansion
for the e�ective friction operator w�o

w�o �
�

dR1 n�1�Mo�1� �
� �

dR1 dR2

�
n�1, 2�Mo�1; 2� ÿ n�1�n�2�Mo�1� � Lo�2�

�
: �11�

Mo�1�, Mo�1; 2� and Lo�2� can be calculated by solving the single-particle and two-particle
¯ow problem. Felderhof and Ooms have done this in point-particle approximation using
Stokes' resistance law for the particles. Felderhof and Jansen have solved the single-particle
¯ow problem for the ®nite-diameter-particle case. They take the full force ®eld exerted by the
particle on the ¯uid into account (that is all force multipole moments, not only the ®rst). In
this way their model accounts implicitly for such terms in the particle equation of motion as
the added-mass term and the Basset term, in addition to the friction term. Their calculation
method can handle the two-particle ¯ow problem in principle, but the calculations are very
tedious and computationally intensive.
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Substitution of Eq. (7) in the equation of motion gives (after spatial Fourier transformation)
for the ®nite-diameter-particle caseh

Z
ÿ
a2 � q2

�
ÿ wT�q, o�

i
hvqoi � �1ÿ f�FT

0qo, �12�

which speci®es the mean suspension velocity hvqoi in response to the transversal component of
the force FT

0qo: The symbol Z denotes the dynamic viscosity of the ¯uid, q the wave number
and q the wave vector. a is given by

a �
�ÿiorf

Z

�1=2

, �13�

where rf is the ¯uid density. The function wT�q, o� is the transversal component of the e�ective
friction operator de®ned by

w�o � wL�q, o� Ãq Ãq� wT�q, o�
ÿ
1ÿ Ãq Ãq

�
, �14�

in which Ãq is the unit vector in the direction of q. For an incompressible ¯uid the pressure term
does not occur in the equation of motion for the transversal component of the force. It is in
the equation for the lateral component.

FT
0qo can also be related to the mean unperturbed (without particles) ¯uid velocity ®eld v0qo

by means of the following expression�
Z
ÿ
a2 � q2

��
v0qo�FT

0qo: �15�

Substitution of Eq. (15) into (12) yields the relation between the suspension velocity and the
unperturbed ¯uid velocity

hvqoi � �1ÿ f�H�q, o�v0qo, �16�

where the function H�q, o� is given by

H�q, o� � Z
ÿ
a2 � q2

�
Z
ÿ
a2 � q2

�ÿ wT�q, o�
: �17�

Straightforward calculations yield similar relations for the mean particle velocity vpqo and the
mean ¯uid velocity vfqo for the ®nite-diameter-particle case in terms of v0qo and p0qo

vpqo �
nh
�1ÿ f�GT�q, o�

i
H�q, o� � GT

F�q, o�Z
ÿ
a2 � q2

�o
v0qo � GL

F�q, o�iqp0qo, �18�
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vfqo �
�h

1ÿ fGT�q, o�
i
H�q, o� ÿ f

1ÿ f
GT
F�q, o�Z

ÿ
a2 � q2

��
v0qo

ÿ f
1ÿ f

GL
F�q, o�iqp0qo, �19�

The functions wT�q, o�, GT�q, o�, GL
F�q, o� and GL

F�q, o� are speci®ed in Appendix A.
Within the point-particle approach the force density FT

0qo acts in the entire space, whereas in
the ®nite-diameter-particle approach its action is restricted to the space occupied by the ¯uid.
Accordingly, Eq. (12) di�ers for the point-particle case by the fact that the factor �1ÿ f� on
the right-hand side is absent. The equivalent of Eq. (16) is therefore given by

hvqoi � H�q, o�v0qo, �20�
where the function H�q, o� is as in Eq. (17). Within the point-particle approach the mean ¯uid
velocity vfqo is identical to the suspension velocity hvqoi

vfqo � hvqoi � H�q, o�v0qo, �21�
while the mean particle velocity ®eld vpqo can be expressed as

vpqo � GT�q, o�hvqoi � GT�q, o�H�q, o�v0qo: �22�
GT�q, o� and wT�q, o� for the point-particle approach are di�erent from their expressions for
the ®nite-diameter-particle approach, as in the point-particle approach the hydrodynamic
interactions between the particles (in two-particle approximation) are taken into account. They
are speci®ed in Appendix B.

3. Calculation method for turbulence intensities

In the foregoing paragraphs we described the dynamics of a solid spheres suspension for an
arbitrary space- and time-dependent driving force ®eld F0�r, t�: The response of the suspension
was evaluated in the temporal and spatial Fourier domain. The resulting suspension velocity
®eld hvqoi, the particle velocity ®eld vpqo and the perturbed ¯uid velocity ®eld vfqo were
determined in the ®nite-diameter-particle approach and the point-particle approach.
In this section, we choose a speci®c unperturbed ¯uid velocity ®eld v0 that shows the

features of isotropic, homogeneous, stationary turbulence and calculate the perturbed (with
particles) ¯uid and particle velocity ®elds.
The velocity ®eld v0 will be regarded as a stochastic velocity ®eld described by

v0�r, t�v0�r 0, t 0 � � G0

ÿ
rÿ r 0, tÿ t 0

�
, �23�

where the bar indicates an average over an ensemble of realizations of the turbulent velocity
®eld. The correlation G0 depends on the relative position rÿ r 0 and relative time tÿ t 0 only
and is independent of the absolute spatial and time coordinates. Fourier transforming equation
(23) yields
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v0qov�0q 0o 0 �
1

�2p�8
�

dr dt dr 0 dt 0 v0�r, t�v0�r 0, t 0 �ei�otÿq�r�eÿi�o 0t 0ÿq 0�r 0 �

� S0�q, o�d
ÿ
qÿ q 0

�
d�oÿ o 0 �, �24�

where the (�) denotes the complex conjugate. The spectral tensor ®eld S0�q, o� is de®ned as

S0�q, o� � 1

�2p�4
�

dr

�
dt G0�r, t�ei�otÿq�r�: �25�

The ¯uid is assumed to be incompressible. For this reason S0�q, o� is purely transversal and
can be written as

S0�q, o� � S0�q, o�
ÿ
Iÿ Ãq Ãq

�
: �26�

The quantity S0�q, o� is referred to as the unperturbed (without particles) spectral density of
the ¯uid.
We assume the following form for the unperturbed spectral density

S0�q, o� �
E0�q�
4pq2

R0�q, o�, �27�

where E0�q� represents the three-dimensional energy wavenumber distribution and R0�q, o� is
the corresponding relaxation function. These functions should ful®l the conditions�1

0

dq E0�q� � 1

2
v20 ,

�1
ÿ1

do R0�q, o� � 1: �28�

The last property expresses the fact that the turbulent energy contained in the eddies with a
wavenumber between q and q� dq is constant in time, as is required for stationary turbulence.
This implies that, for each wavenumer q the energy added by the force density ®eld FT

0qo is
exactly balanced by viscous dissipation. For E0�q� the following distribution, given by Hinze
(1975), p. 211, is assumed

E0�q� � 8

3p
v20

q4L5ÿ
1� q2L2

�3 , �29�

which corresponds to an exponential decay of the longitudinal correlation function. The
quantity L is called the Eulerian integral length scale. It can be shown that the relaxation
function R0�q, o� is equal to

R0�q, o� � 1

p
nq2

o2 � ÿnq2
�2 : �30�

The chosen functions E0�q� and R0�q, o� ful®l the conditions of Eq. (28). This implies that
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�1
0

dq 4pq2

�1
ÿ1

do S0�q, o� � 1

2
v20 � k0, �31�

where k0 is de®ned as the turbulence intensity of the ¯uid in the absence of particles.
Given the unperturbed spectral density S0�q, o�, the perturbed ¯uid spectral density Sf�q, o�

and the particle spectral density Sp�q, o� can be derived using the Eqs. (19) and (18) for the
¯uid velocity ®eld and the particle velocity ®eld, respectively, in case of the ®nite-diameter-
particle approach. In this derivation also the following relations are used

FL
0qo � iqp0qo �32�

and

jFL
0qoj2 �

1

2
jFT

0qoj2, �33�

which hold for isotropic ¯ows and which relates the unperturbed ¯uid pressure to the
unperturbed ¯uid velocity. This yields after straightforward calculations

Sf�q, o� �
(
j
h
1ÿ fGT�q, o�

i
H�q, o� ÿ f

1ÿ f
~G

T

F�q, o�j2 �
1

2

�
f

1ÿ f

�2

j ~GL

F�q, o�j2
)
S0�q, o�

�34�

Sp�q, o� �
�
jGT�q, o��1ÿ f�H�q, o� � ~G

T

F�q, o�j2 �
1

2
j ~GL

F�q, o�j2
�
S0�q, o�, �35�

where

~G
T

F�q, o� � Z
ÿ
a2 � q2

�
GT
F�q, o�, ~G

L

F�q, o� � Z
ÿ
a2 � q2

�
GL
F�q, o�: �36�

With Eqs. (34) and (35) the relevant spectra can be calculated from the spectrum of the
unperturbed ¯uid in the ®nite-diameter-particle approach.
For the point-particle approach it can easily be shown that these equations can be written in

the following form

Sf � jH�q, o�j2S0�q, o� �37�

Sp � jGT�q, o�j2jH�q, o�j2S0�q, o�: �38�
Now the calculation of the spectra (in ®nite-diameter-particle- and point-particle
approximation) has been speci®ed, the calculation scheme for the turbulence intensities can be
®nalized. Analogous to the quantity k0 � 1

2v
2
0 of Eq. (31) the following turbulence intensities

can be introduced

kf � 1

2
v2f �

�1
0

dq 4pq2

�1
ÿ1

do Sf�q, o� �39�
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kp � 1

2
v2p �

�1
0

dq 4pq2

�1
ÿ1

do Sp�q, o�: �40�

We de®ne the ratio of the turbulence intensities of the perturbed (with particles) ¯ow and the
unperturbed (without particles) ¯ow

kf=k0, �41�
and the ratio of the turbulence intensities of the particles and the perturbed ¯uid ¯ow

kp=kf : �42�
In the next section, results will be given for these two ratios as function of relevant
dimensionless groups, using the calculation scheme developed above. Both the results derived
with the ®nite-diameter-particle approach and the point-particle approach will be presented
and compared.

4. Results, comparison with other studies and conclusions

When formulating the resulting equations of the previous paragraphs in a dimensionless
way, three dimensionless parameters appear, viz. f, rf=rp and a=L: �f is the particle volume
fraction, rf is the ¯uid density, rp is the particle density, a is the particle diameter and L is the
integral length scale of turbulence.) So, in this section, results will be presented in a
dimensionless form as function of these three parameters. A set of Matlab programs was
developed for the numerical calculation of the spectra, the turbulence intensities and their
ratios kf=k0 and kp=kf : (The Matlab programs are available on request.) The di�erent models
that were discussed (namely the ®nite-diameter-particle model without hydrodynamic
interaction between the particles, and the point-particle model with and without hydrodynamic
interaction) can be applied with these programs.
The turbulence intensities k0, kf and kp are obtained by integration of the corresponding

spectral densities over the full q, o-domain (see Eqs. (31), (39) and (40)). The turbulence
intensity ratios kf=k0 and kp=kf are plotted in Figs. 1 and 2 as function of the dimensionless
particle diameter a=L for a particle volume fraction f � 0:1 and a density ratio rf=rp � 10:: In
Figs. 3 and 4, these ratios are plotted as function of a=L for a particle volume fraction f � 0:1
and a density ratio rf=rp � 1: �rf=rp � 1 means that the particle density is the same as the ¯uid
density.) Finally, in Figs. 5 and 6, the turbulence intensity ratios are plotted as function of a=L
for a particle volume fraction f � 0:1 and a density ratio rf=rp � 0:01: The range of a=L-
values is between 10ÿ3 and about 10ÿ1. For larger values other phenomenons, such as
turbulence generation in the wake of the particles, become important. Such phenomenons are
not incorporated in the physical model. (Sometimes it is claimed that the e�ect of the wake of
the particles becomes already noticeable for values of the ratio of the particle diameter and the
integral length scale larger than 0.01. If that is true, only the results given in Figs. 1±6 for
values of a=L smaller than 0.01 have physical meaning.)
A number of important conclusions can be drawn from the results given in the ®gures. First

of all, it is clear that at a volume fraction f � 0:1 the particles can already have a signi®cant
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Fig. 1. kf=k0 as function of a=L for density ratio rf=rp � 10 evaluated for the ®nite-diameter-particle case (ÐÐÐ),
and for the point-particle case with �. . . . . .� and without (± ± ±) hydrodynamic interaction.The results found in

point-particle approximation with and without hydrodynamic interaction practically coincide.

Fig. 2. kp=kf as function of a=L for density ratio rf=rp � 10 evaluated for the ®nite-diameter particle case (ÐÐÐ),
and for the point-particle case with ( . . . . . . ) and without (± ± ±) hydrodynamic interaction. The results found in
point-particle approximation with and without hydrodynamic interaction practically coincide.
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Fig. 3. kf=k0 as function of a=L for density ratio rf=rp � 1 evaluated for the ®nite-particle-particle case (ÐÐÐ),
and for the point-particle case with ( . . . . . . ) and without (± ± ±) hydrodynamic interaction. The results found in

point-particle approximation with and without hydrodynamic interaction practically coincide.

Fig. 4. kp=kf as function of a=L for density ratio rf=rp � 1 evaluated for the ®nite-diameter-particle case (ÐÐÐ),
and for the point-particle case with ( . . . . . . ) and without (± ± ±) hydrodynamic interaction.
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Fig. 5. kf=k0 as function of a=L for density ratio rf=rp � 0:01 evaluated for the ®nite-diameter-particle case
(ÐÐÐ), and for the point-particle case with ( . . . . . . ) and without (± ± ±) hydrodynamic interaction.

Fig. 6. kp=kf as function of a=L for density ratio rf=rp � 0:01 evaluated for the ®nite-diameter-particle case
(ÐÐÐ), and for the point-particle case with ( . . . . . . ) and without (± ± ±) hydrodynamic interaction.
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in¯uence on the ¯uid turbulence. This in¯uence increases with decreasing value of rf=rp: For
rf=rp � 0:01, the ¯uid turbulence intensity can even be reduced to a value less than 10% of the
turbulence intensity of the ¯uid without particles. So this in¯uence has to be taken into
account for a realistic modeling of turbulent dispersed ¯uid±solid ¯ows. It can be seen from
the ®gures that at the same volume fraction smaller particles are more e�ective in suppressing
the ¯uid turbulence than larger particles. The reason is that at the same volume fraction
smaller particles have a larger surface area and cause more friction with the ¯uid than larger
particles. Secondly, the e�ect of the hydrodynamic interactions at f � 0:1 is still mostly
negligible (at least in point-particle approximation). Only at very low values of the density
ratio rf=rp the hydrodynamic interactions become signi®cant. This conclusion is important, as
the calculation of the hydrodynamic interaction between particles is quite cumbersome. Finally,
the di�erences between the results for the point-particle model and the ®nite-diameter-particle
model are, in general, signi®cant for all values of a=L: So one has to be careful with point-
particle models.

A comparison has been made with the results of other studies, mentioned in Section 1.
Below the comparison with two of these studies, viz. the study by Squires and Eaton (1990)
and Yarin and Hetsroni (1994), will be discussed.

Squires and Eaton, using direct numerical simulation, investigated also the turbulence
modi®cation by particles in stationary, homogeneous, isotropic turbulence. It has to be pointed
out that they did not calculate the detailed ¯ow around ®nite-diameter particles. They included
the Stokes force of the particles on the ¯uid as point forces in the equation of motion. They
found that the e�ect of increased mass loading is to suppress the ¯uid turbulence intensity by
about 10% (mass loading = 0.1) to about 50% (mass loading = 1.0). This is in reasonable
agreement with our results given in Fig. 1 (mass loading = 0.01), Fig. 3 (mass loading = 0.1)
and Fig. 5 (mass loading = 10). It can be seen from these ®gures that dependent on the
particle size and on the version of the model (point-particle model or ®nite-diameter-particle
model), the decrease in the ¯uid turbulence intensity goes from a few percent to almost 90%
with increasing mass loading. Squires and Eaton also studied the e�ect of the particles on the
¯uid turbulence spectrum. They found that as the mass loading is increased the energy in the
low wavenumbers (large eddies) decreases relative to the energy in the high wavenumbers
(small eddies). (As discussed, the total energy of all eddies decreases with increasing mass
loading.) The same result is found with the model described in this publication. In Fig. 7, the
ratio of the ¯uid turbulence spectra with and without particles Sf=S0 (calculated with the
point-particle model) is shown as function of the dimensionless wavenumber qa and the
dimensionless frequency oa2=n for f � 0:1 and rf=rp � 0:01, a is the particle diameter and n is
the kinematic viscosity of the ¯uid. At small wavenumbers and low frequencies the particles
follow the motion of the ¯uid and the suspension has an e�ective mass density rs � rf � frp:
This strongly reduces the ¯uid turbulence spectrum at these wavenumbers and frequencies.
Squires and Eaton found that at low mass loadings the particles are not uniformly dispersed
throughout the ¯uid volume and that there are distinct regions of particles accumulation. This
e�ect is not incorporated in our model. However, they point out that an optimum ratio of
particle time scale and ¯uid turbulence time scale must exist for strong preferential
concentrations to occur. Moreover, according to them the increased coupling between the
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particles and the ¯uid turbulence at higher mass loadings reduces the tendency for particles to
accumulate in distinct regions.
As discussed, Yarin and Hetsroni developed a theoretical model for the particles±

turbulence interaction that takes into account the ¯uid turbulence suppression by the
particles and the ¯uid turbulence generation in the wake behind particles. In our model, only
the ¯uid turbulence suppression is considered; we hope to include the turbulence generation
in future work. For small particles the turbulence generation is negligible, and so in that
case it is possible to compare the results of our model with those given in Yarin and
Hetsroni's publication. After dimensional analysis they derive the following four relevant
dimensionless groups: a=L, rf=rp, f�rp=rf� (the particle mass loading) and Rep (the particle
Reynolds number). In our model we ®nd only the ®rst three dimensionless groups, the
particle Reynolds number is absent. The reason is that Yarin and Hetsroni use a Reynolds-
number dependent resistance law for the particles, whereas we use in the point-particle model
Stokes' law and in the ®nite-diameter-particle model restrict ourselves to a low Reynolds
number ¯ow. The particle Reynolds number would, of course, also be present in our model,
when we would use, for instance, the particle resistance law of Yarin and Hetsroni in the
point-particle model. Yarin and Hetsroni mention in their publication that for small particles
the particles±turbulence interaction is determined by only one parameter: the mass content of
the particles in the suspension �rp=rf�f: We checked this statement analytically in our point-
particle model, and indeed found that for small values oa2=n and for negligible
hydrodynamic interaction between the particles, the turbulence modi®cation is dependent on
the combined parameter �rp=rf�f and not on rf=rp and f separately. However, for larger
values of oa2=n this statement can no longer be valid. Our results for the turbulence
modi®cation for small particles agree reasonably well with the results of Yarin and Hetsroni
in case of the point particle model. For large values of the particle mass loading the results
of the ®nite-diameter-particle model also agree reasonably well. However, for small values of
the particle mass loading but ®nite values of the particle volume fraction �f has a ®nite
value; rp=rf is small), there is a remarkable di�erence between the ®nite-diameter-particle
model, on the one hand, and the point-particle model and the model of Yarin and Hetsroni,

Fig. 7. Sf=S0 as function of qa and oa 2=n for f � 0:1 and rf=rp � 0:01 evaluated for the point-particle case with
hydrodynamic interaction.
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on the other. (This di�erence can also clearly be seen in Fig. 1.) For small particle mass
loading, the e�ect of the particles on the ¯uid turbulence intensity is negligible according to
the point-particle model and the Yarin±Hetsroni model. However, as long as f remains ®nite
�f � 0:1 in Fig. 1) there remains a considerable damping e�ect of the particles on the ¯uid
turbulence according to the ®nite-diameter-particle model. We plan to carry out experiments
to check this interesting result.

5. Suggestions for future research

In order to extend the scope of the work presented in this publication and to verify the
sensitivity on some of the underlying assumptions, it would be useful to investigate the
following items:

1. Dependence on the choice of the unperturbed turbulence spectrum. The turbulence
intensities presented in this publication are derived on the basis of the assumed unperturbed
spectral density S0�q, o�, de®ned by Eqs. (27), (29) and (30). The slow decay for large values
of q is probably not realistic and requires modi®cation for values of q in the range of the
Kolmogorov length scale. Moreover, the distribution does not exhibit the qÿ5=3-behavior
that is characteristic for eddies with length scales in the inertial subrange. It would be
interesting to repeat the calculations of this publication with one or more di�erent
unperturbed spectral densities S0�q, o� and to study the sensitivity of the results with respect
to the shape of the spectrum. Next to the three dimensionless groups discussed earlier �f,
rf=rp and a=L�, another dimensionless group (the ratio of the Kolmogorov length scale and
the integral length scale) will then occur in the model.

2. Crossing trajectory e�ect. The presence of a uniform external force acting on the particles
(such as the gravity force) a�ects the particle velocity and, therefore, also the ¯uid
turbulence. The reason is that the residence time of a particle in a certain ¯uid eddy is
shortened as a result of its motion in the direction of the external force. This e�ect is known
as the crossing trajectory e�ect. Since the gravity force is indeed present in all systems of
interest, it is worthwhile investigating the modi®cations of the physical model when an
additional constant term is included in the equation of motion.

The above two extensions of our model are very well possible. Other topics such as turbulence
generation by the particles, wall e�ects and particle dispersion are also important but are not
simple extensions of the present work.
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Appendix A. Speci®cation of wT�q, o�, GT�q, o�, GT
F�q, o� and GL

F�q, o� for ®nite-diameter-particle
case

It is convenient to introduce the dimensionless arguments x and y which are related to o
and q, respectively, in the following way:

x � aa, y � qa, �A1�
where a is the diameter of the particles. The functions wT�q, o�, GT�q, o�, GT

F�q, o� and GL
F�q, o�

were determined by Felderhof and Jansen and are given by (see also Felderhof and Jansen,
1991, paragraphs 5 and 6)

wT�q, o� � 3

2

f
a2

Z
�
P01�q, o� � PU1�q, o� � PO1�q, o�

� �A2�

GT�q, o� � 3
j1
y
gt�q, o� �

3

2
j2gr�q, o� �A3�

GT
F�q, o� � ÿ4pa3

j1
y
yt�q, o� ÿ 4

5
pa5j2yr�q, o� �A4�

GL
F�q, o� � ÿ4pa3

j1
y
yt�q, o�, �A5�

where

P01�q, o� � ÿ3�1� x�j20 ÿ
X1
l�1

(
l�2l� 1�x

2 � y2

y2
� x

kl

��2l� 3�kl�1 � �2l� 1�klÿ1
�)

j2l �A6�

PU1�q, o� �
�
3�1� x�j0 � 3x 2 j1

y

�
~gt�q, o� �A7�

PO1�q, o� �
�
3� 3x� x 2

1� x
yj1 � x 2j2

�
~gr�q, o�, �A8�

in which

~gt�q, o� � gt�q, o� ÿ
4p
3
Za
ÿ
x 2 � y2

�
yt�q, o� �A9�

~gr�q, o� �
y

2a

�
gr�q, o� ÿ

8p
15

Za3
ÿ
x 2 � y2

�
yr�q, o�

�
: �A10�

The functions gl (which will be used later on) and kl are modi®ed spherical Bessel functions
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taken at argument x and the functions jl are spherical Bessel functions of the ®rst kind taken
at argument y. They are de®ned as

gl �
�

p
2x

�1
2
I
l�12
�x�, kl �

�
p
2x

�1
2
K

l�1
2
�x�, jl �

�
p
2y

�1
2
J
l�12
�x�, �A11�

where Jn is the Bessel function of the ®rst kind and order n, and In and Kn are modi®ed Bessel
functions of order n and of the ®rst and second kind, respectively. Finally, the functions
yt�q, o�, yr�q, o�, gt�q, o� and gr�q, o� need to be speci®ed (see also Felderhof and Jansen, 1991,
paragraph 6). The function yt�q, o� is de®ned by

yt�q, o� � 3
j1
y
yt�o�, �A12�

where yt�o� is equal to

yt�o� � 1

6pZa
1

1� x� 1
9
�1� 2Rm�x 2

, �A13�

in which Rm is the ratio of the particle density and the ¯uid density rp=rf : The function
yr�q, o� is de®ned by

yr�q, o� � 15

x 2 � y2

�
xg0
g1

j1
y
ÿ j0

�
yr�o�, �A14�

with yr�o� equal to

yr�o� � 1

8Za3
1� x

1� x� 1
3 � 1

15Rm�x 2 � x3� : �A15�

The function gt�q, o� is given by

gt�q, o� � gt�o�j0 � dt�o�j2, �A16�

where gt�o� and dt�o� are de®ned as

gt�o� �
1� x� 1

3x
2

1� x� Zx 2
, dt�o� �

1
3x

2

1� x� Zx 2
, �A17�

in which Z � 1
9�1� 2Rm�: Finally, the function gr�q, o� is given by

gr�q, o� � 3
j1
y
gr�o�, �A18�
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with

gr�o� �
xex

3g1

1

1� x� 1
3x

2 � 1
15Rm�x 2 � x3� : �A19�

Appendix B. Speci®cation of wT�q, o� and GT�q, o� for the point-particle case

For point particles with hydrodynamic interactions Felderhof and Ooms found

wT�q, o� � ÿfZa2RmGT�q, o�, �B1�
with

GT�q, o� � 1

1� 2
9x

2Rm

�
1ÿ fJ�q, o�� : �B2�

The factor J�q, o� represents the hydrodynamic interactions and is given by

J�q, o� � J1�q, o� � J2�q, o�, �B3�
where

J1�q, o� � 3x

� 2

0

ds s2
�
A1�ys�f�xs� � A2�ys�g�xs�

� �B4�

J2�q, o� � x 2l
ÿ
ix 2Rm

� �1
2

ds s2

"
1ÿ 3xl

ÿ
ix 2Rm

�
A1�ys�f�xs�

1ÿ x 2l
ÿ
ix 2Rm

�
f�xs�2 f�xs�2

� 2ÿ 3xl
ÿ
ix 2Rm

�
A2�ys�g�xs�

1ÿ x 2l
ÿ
ix 2Rm

�
g�xs�2 g�xs�2

#
, �B5�

in which the quantities x and y are de®ned in Eq. (A1) and the functions f, g, A1, A2 and l are
given by

f�z� � 3

z3

�
1ÿ �1� z�eÿz� �B6�

g�z� � 3

2z3

�
ÿ 1�

ÿ
1� z� z2

�
eÿz

�
�B7�

A1�z� � sin zÿ z cos z

z3
�B8�
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A2�z� � ÿsin z� z cos z� z2sin z

z3
�B9�

l�z� � 1

1� i 92z
, �B10�

where the argument z is, in general, a complex number. The e�ect of the hydrodynamic
interactions can be omitted by taking the factor �1ÿ fJ�q, o�� out of Eq. (B2).
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